Emily Leggat

PhD Student • Ecology and Evolution Columbia University • New York, NY 10027 <u>el3258@columbia.edu</u> • <u>LinkedIn</u>

EDUCATION

Columbia University, New York, NY
PhD, Ecology and Evolution, Naeem-Palmer Lab Group
Wesleyan University, Middletown, CT
BA, Biology, GPA: 3.92/4.00
The George Washington University, Washington, DC
Columbian College of Arts and Sciences, GPA: 3.83/4.00

RESEARCH EXPERIENCE

Ag Biologicals Engineer 1 - Microbiology, Ginkgo Bioworks, Boston, MA October 2022 - July 2023

- Optimized corn biomarker assay for gene expression analysis in response to soil and microbial nitrogen presence
 - o Established best mRNA extraction and preservation methods for cDNA synthesis
 - \circ Created and wrote protocols for high-throughput RNA \rightarrow cDNA \rightarrow qPCR sample processing
 - Ran qPCR and analyzed data in R to calculate fold gene expression
- Validated DNA extraction protocols for microbial strains in plant tissues
 - Tested various methods to optimize DNA yield and ran qPCR and gel electrophoresis on samples to confirm results
- Planned workflows for sequential sporulation and *in planta* assays
- Continued responsibilities from Joyn Bio following acquisition and the creation of the Agriculture Division

Plant-Microbe Interactions Research Associate, **Joyn Bio**, Boston, MA *Microbial Discovery Biologist Contractor*

- Performed *in planta* assays to determine microbial colonization of shoots and roots in V1 corn and VC soybean
 - Planted seeds, watered, and harvested up to 200 plants per experiment, with two experiments per week
 - Separated, dried, ground, and resuspended plant tissues for long-term storage and downstream analysis
- Extracted microbial DNA from plant tissue samples to perform qPCR
 - Prepared qPCR plates both by hand and using a Hamilton robot for analysis in a LightCycler
- Grew, diluted, and plated experimental microbial strains for sporulation assays and later use in *in planta* assays

Prepared several types of media to determine each strain's preferred media for sporulating
 Undergraduate Research Fellow, Singer Lab, Wesleyan University
 April 2019 - May 2021
 Biology Department, PI: Michael Singer, PhD

- Analyzed the effects of forest fragmentation on parasitism of caterpillars during the 2019 field season
 - Systematically sampled red maple and witch hazel branches for caterpillars in sixteen sites in midland Connecticut
 - Reared collected caterpillars to monitor for emerged parasitoids, and preserved them for future identification
- Conducted a literature review examining the research on the enemy-free space hypothesis as it pertains to caterpillar diet breadth since the publication Bernays & Graham 1988
 - Wrote and edited a book chapter in collaboration with other lab members, published in *Caterpillars in the Middle: Trophic Interactions in a Changing World* (2022)

August 2018 - May 2021

August 2016 - May 2017

March 2022 - October 2022

October 2021 - March 2022

• Presented research findings at the Wesleyan Research in Sciences poster session in the 2019 and 2020 summers

TEACHING EXPERIENCE

Course Assistant, Principles of Biology Laboratory, Wesleyan University
 Guided 10-15 students in BIOL 191 and 192 through wet lab exercises including, but not limited to, pipetting, making agarose gels, conducting PCR, performing Bradford assays, bacterial transformations, and dissections

• Coordinated directly with Professor and Lab Coordinator weekly to assess students' performances, improve lab activities for subsequent semesters, and troubleshoot conducting labs with COVID-19 safety measures

PUBLICATIONS

Singer, M.S., Anderson, R.M., Hennessy, A.B., <u>Leggat, E.</u>, Prasad, A., Rathe, S., Silverstone, B., and Wyatt, T. J. (2022). Predators and caterpillar diet breadth: appraising the enemy-free space hypothesis. In R.J. Marquis. & S. Koptur (Eds.), *Caterpillars in the middle: Trophic interactions in a changing world* (pp. 273-96). Springer.

HONORS AND AWARDS	
Phi Beta Kappa	2021
Wesleyan College of the Environment Summer Research Fellowship	2019, 2020
George Washington University Presidential Academic Scholarship	2016 - 2017
ADDITIONAL EXPERIENCE	
Madagascar Research and Conservation Institute, Madagascar	September 2017 - November 2017
Surveyed herpetofaunal distribution and habitats in the forests of No.	osy Komba
 Analyzed sea turtle habits and populations on the Nosy Komba reef 	
 Studied wild black lemur behavior through prolonged observation 	
 Transcribed survey data in a master spreadsheet for trend analysis 	

SKILLS

Computer: R, ArcGIS, QGIS, Benchling, Smartsheets Lab: Nucleic acid extraction, qPCR Language: French (conversational) Certifications: PADI Advanced Open Water Diver (2017)